
www.manaraa.com

www.manaraa.com

'A

www.manaraa.com

www.manaraa.com

www.manaraa.com

HD28
.M414

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

THE "SOFTWARE FACTORY" RECONSIDERED:
AN APPROACH TO THE STRATEGIC MANAGEMENT OF ENGINEERING

Michael A. Cusumano
Sloan School of Management

M.I.T.

May 1987 WP #1885-87

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

www.manaraa.com

www.manaraa.com

THE "SOFTWARE FACTORY" RECONSIDERED:
AN APPROACH TO THE STRATEGIC MANAGEMENT OF ENGINEERING

Michael A. Cusumano
Sloan School of Management

M.I.T.

May 1987 WP //1885-87

www.manaraa.com

MJ.T. LIBRARIES

Oiirr 2 ') 1987

RECBVH)

www.manaraa.com

Michael A. Ci'sumano 6/1/87
MIT Sloan Scl ool of Management Software Project Paper #1

Working Pipe- #1885-87

THE "SOFTWARE FACTORY" RECONSIDERED:
AN APPROACH TO THE STRATEGIC MANAGEMENT OF ENGINEERING'

Contents

:

Introduction
I. Conceptual Framework
II. Software Industries in the U.S. and Japan
III. The Survey
IV. Implications for Engineering Management
Conclusions
Appendix: Data Analysis

INTRODUCTION

This paf er examines the question of whether or not companies are

choosing !o .iianage a complex engineering activity such as large-scale

softw.ire development with a range of strategic considerations and

organizational as well as technological approaches that corresponds to the

spectrum usuplly associated with "hard" manufacturing, i.e. job shops, batch

organizaticns, and factories exhibiting various degrees of flexibility in

product mixes and technologies. There are several interrelated conclusions:

(1) This spectrum, including "factory" approaches, is observable in a

statisi icalb/' significant sample of managers at 38 software facilities in the

U.S. nnd - apan . (2) The existence of this spectrum suggests there is a range

of beliefs -imong managers as to how software development should or can be

managed; -ind that there is nothing inherent in software as a technology that

prevents •.om-> firms from managing the development process in a more

discipiined, "factory-like" mannner than others. (3) Japanese firms - led by

www.manaraa.com

the NEC group and Toshiba, followed by NT&T, Hitachi, and Fujitsu -- are

significantly ahead of most U.S. competitors in applying what might be called

a disciplined and flexible factory approach -- applying production-

management concepts, general-use tools, standardized procedures, effective

quallty-cofitrcl techniques -- to large-scale software development.

The research methodology followed was to develop a conceptual model

consisting of 23 criteria related to software support tools and technologies

as well as to various policies or methodologies for design standardization,

documentation, reusability, maintenance, portability, and the like. Surveys

were then received from managers at 38 major facilities making two types of

products that usually require large amounts of people, time, and tools to

develop, and which might provide incentives for managers to seek

similat'itaries and common components or tools across different projects:

operating systems for mainframes or minicomputers ("systems" software); and

real-time ctpphcations programs, such as for factory control or reservations

systems (' api>lications" software). An underlying assumption was that a

persistent wotldwide shortage of software engineers and rising demand for

computer programs might have convinced some managers to try to rationalize

development activities much as their predecessors in other industries have

rationalized "hard" manufacturing.

There has been extensive research, as well as trial-and-error

development, of software tools and environments over the past decades. The

concept of a "software factory" rather than a laboratory as a model for

integrating tO')ls and procedures in a systematic, disciplined environment was

www.manaraa.com

first discussetJ in a 1960s' NATO science conference. It was then attempted

(successfully) in Japan beginning in the late 1960s at Hitachi and in the U.S.

(with less ;uc(;ess) during the mid-1970s at System Development Corporation.

Subsequent to Hitachi, most other large Japanese software producers have

created disciplined, tool-intensive, centralized facilities for software

development, incorporating many process-analysis, production-mangement, and

especially quality-control concepts or techniques used in hardware factories.

U.S. firms have also made progress in software engineering, but since SDC

and the late 1970s, have avoided using the term "factory" to describe their

facilities or efforts to improve software productivity.

As a general observation, it seems that the process-management skills

Japanose firm<; have demonstrated in various manufacturing fields, resulting

in extrordinarily high levels of productivity and quality control, occur with

surprising regularity in their software engineering facilities and far more

frequently thnn in comparable U.S. facilities. This may be a disturbing

conclusion to U.S. managers and policy makers who have believed that the

U.S. lead ovi-^r Japan and other countries was insurmoitntable at least in

software. While this paper makes no attempt to deny that the U.S. has a

large and calented supply of software programmers, it does suggest that U.S.

firms may not be leaders in implementatinq software-enciineerinq toqls^and

manaqemeifit techniques . Moreover, management aspects are becoming

increasing important to improving productivity and quality in the software

industry as the shortage of programmers and the demand for programs

continue. A relative stabilization in the product technology that may be

occurring would also make "process innovation" in software more likely,

www.manaraa.com

theoretically, and possible on a practical level.

This paper, and parallel case studies currently in preparation, argue as

well that firms can achieve significant standardization and rationalization of

the development process even if they cannot or will not standardize their

end products as in a mass-production factory. In this sense, the term

"software factory" does not imply rigidity. In fact, facilities closest to the

proposed factory model either customized products such as applications

programs or designed unique products such as operating systems. The

factory analogy should thus be thought of as synonomous with a strategic

commitment, at the company- or at least facility-level, to providing

sufficient scale of people and operations to justify research and development

for proces.i technology and techniques; institutionalizing "good" technology

and practice; improving process efficiency through teamwork and better

Inter-group communication; allowing an entire organization to focus more on

worker productivity and product quality; and eliminating waste and

redundancies due to dysfunctional behavior and the lack of an organizational

strategy. Perhaps the most important potential benefit of this approach

would be defect control, since data from IBM, TRW, and GTE indicate that

fixing bugs in a completed program during operation can cost 100 times that

of detecting errors in the design stage. "^

www.manaraa.com

I. CONCEl'TtAL FRAMEWORK

A Sp<x:trum of Manufacturing Strategies and Organizations

Before d'scussing software, a review of how other products have been

developed provides some perspectives on the different strategic and

organizational options potentially available to an engineering organization.

Throughout history, in a variety of industries, countries, and time periods,

product technology for goods such as books, textiles, guns, paper, and

automobiles tended to standardize, at least temporarily. As production

volumes increased, many companies shifted their focus from product

development to process innovation -- including areas such as standardization

of components and procedures, specialization and division of labor, task

automation -- to evolve from craft-like job-shops or batch operations to

large-scale d(!sign and production for mass markets. As Chandler has

described, American companies were leaders in establishing this new mode of

mass production and organization.*^

Once firms made this transition, the strategic issues job-shop managers

faced making one-of-a-kind products -- raising organizational and perhaps

technologi-ai flexibility, product customization, or quick reaction to

individual curtomers -- tended to give way to concerns such as how to

increase v<5luries, lower unit costs, reduce product variety and complexity,

improve standards and process integration, or raise the levels of automation

while lowerinc; the skills required of workers. The results of moving in this

direction - which Ford perfected with the Model-T before World War I--

included hig ler productivity and lower unit costs, and helped make

sophisticated goods such as automobiles accessible to large numbers of

www.manaraa.com

consumers. As Abernathy and Utterback postulated in 1975, these benefits

appeared to offset the higher quahty, greater possibilities for product

differentiation, and general flexibility in terms of products, worker tasks,

and technology found in job-shop or batch operations.

Authors who wrote prior to the early 1980s accurately pointed out the

risks and benefits of basing the strategic management of engineering and

manufacturing on this concept of a "product-process matrix" or "life cycle."

But they had not fully recognized that, during the 1950s, to accommodate a

small but rapidly growing market in Japan, a fourth type of manufacturing

(and engineering for manufacturability) model had also appeared. Pioneered

most effectively at Toyota, the Japanese managed to combine many of the

benefits of mass-production factory environments with the flexibility of

batch operations. This approach (gradually imitated by other Japanese firms

in a variety of industries) relied upon even stricter process control and

standardization of components and procedures than Ford had achieved, but

broadened the job specifications of workers, used automation much more

selectively, and added an interrelated set of process strategies and

techniques (rapid equipment set-up times, low in-process inventory levels and

a "just-in-time" manufacturing and delivery discipline, greater use of

subcontracting, "total" quality control programs and worker self-inspection.)

The entire Toyota system thus served to facilitate production in small rather

than large lots (batches). But, in addition to this greater flexibility, the

process discipline and innovations it incorporated led to the highest levels of

physical productivity among world automakers. The Toyota case also

demonstrated clearly that process efficiency was not achieved merely by

www.manaraa.com

technology, sich as automated machinery. The most important contributions

to production improvements at Toyota appeared to Me in the management

policy area -- process analysis, standardization, and worker discipline and

cooperation.

As U.S. and European automakers learned from Toyota and other

Japanese firms who adopted similar approaches primarily during the 1960s

and 1970s, compared to rigid mass-production engineering and manufacturing,

a mixture of superior process efficiency and flexibility in the mix of final

products made it possible for Japanese companies to compete in the world

marketplace on the basis of not simply product differentiation (high

reliability and perceived quality) or low cost, but with both. As Porter has

suggested, combining product differentiation and cost leadership is, at the

same time, ve-'y difficult for one firm to achieve but equally difficult for its

competitors tc overcome."

Also somewhat beyond the vision of the initial product-process iife-

cyle theorists is a fifth organizational model that appeared in Europe, the

U.S. and Japan initially during the 1960s and 1970s, with continued

refinement:; in the 1980s: highly automated and highly flexible manufacturing

systems (FMS- that can produce a variety of products quickly and with little

or no financial penalty associated with low volumes, once a firm has

invested in developing the system. In these environments, which rely heavily

on tools and systems such as computer-aided design and manufacturing

(CAD,''CAM), the ratio of time and money companies once devoted to purely

production activities is pushed back into product engineering and

www.manaraa.com

development of systems capable of automating a large number of

manufacturing activities. The result is the productivity, control, and quality

of a highly automated factory, plus the capability to produce a variety of

products or introduce innovative designs or processes quickly and at low

cost. This evolution beyond the Ford or "American" style of rigid mass

production has been discussed in the work of Piore and Sabel, Jaikumar,

Meredith, and others.'

The lypclogy of basic production organizations described above, and

their accompanying characteristics and tradeoffs, can be summarized as

follows:

TYFOLOGY OF BASIC PRODUCTION ORGANIZATIONS

TYPE 1 : Job -Shop/Craft Environments
(focu:; on customized products, general purpose equipment and highly
skilled labor, to maximize flexibility in design; full but unsystematic
integration of design and production; high margins from unique designs
make cost control less a priority)

TYPE 2: Katc.i-Operations
(focu; oi' low-volume multiple products, but still much customizing and
high margins)

TYPE 3: R.igicJ Mass Production and Engineering
(focu; on higher volumes and few products; standardized product
technology makes simple, fixed automation and division of de-skilled
labor tasks highly economical; specialization can lead to organizational
sepaiation of design from manufacturing, with engineering sub-
organizations focusing on product development and manufacturing sub-
organiza ions on mass-production)

TYPE 4: Low- Automation Flexible Mass- Production
(focu:» OM process and components standardization and medium to high
but controlled volumes, less rigid automation and more flexible

equipmert (rapid set-up times), and less specialized workers; these
facilitate small-lot production, to combine the benefits of product
variety associated with batch-operations or job shops with cost and
quality controls, and productivity increases, of mass-production

8

www.manaraa.com

environments)

TYPE 5: High -Level Automation, Flexible Production
(focus on design of a system capable of fully integrating and
automatir g product-engineering and manufacturing functions, so that
high-volume and stable product designs (within certain parameters) are
no longer important; this captures the benefits of both job-shop
flexiblity in product differentiation with the productivity, precision, and
standarciized high quality and low costs of mass-production-type
automation)

.

Analogies for Engineering

These categorizations seem most applicable to organizations

manufacturing "hard" goods such as automobiles, as companies choose

different arenas in which to compete, from fully customized products to

mass-produced items. Back in the development part of the organization,

however, there also appear to be choices of a similar nature. For example,

if a customer needs a product, whether it is an automobile, a machine tool,

a semicon<;luc\or chip, or a software program, there are basically three

options: cbtain a fully customized product -- from a vendor or an in-house

departmeni:; obtain a standardized or "packaged" product; obtain a semi-

custornlzed product (from a vendor or an in-house department that

customizes a purchased standardized product) . It follows that vendors should

have three corresponding options: 1) sell a customized product; 2) sell a

standardized product; 3) customize a semi-standardized product. Companies

in the bi.siness of making these items then have several options for

managing che process of product development as well as manufacturing--

and these nigit very well parallel those of a manufacturing organization, as

outlined bfilow.

www.manaraa.com

BASIC STRATEGIES FOR DEVELOPMENT ORGANIZATIONS

STRATEGY 1:

Customize each development
process for each product
("Job-Shop" Analogy)

IMPLEMENTATION:
Maximize the capability of the
organization to produce a unique
product that will capture a high price

from at least one customer

STRATEGY 2:

Customize some processes
and sell more than one
of each product
("Batch" Analogy)

IMPLEMENTATION:
Maximize the capability of the
organization to produce a unique
product that will capture a large
share of the market

STRATEGY 3:

Standardize the processes
and the products
("Rigid Factory" Analogy)

IMPLEMENTATION:
Maximize the capability of the
organization to produce a product
with standard features at the lowest
possible price

STRATEGY 4:

Standardize the processes but
customize the end products,
with large- factory efficiency
("Flexible Factory" Analogy)

IMPLEMENTATION:
Maximize the capability of the
organization to produce semi-custom
products at a low price through
the use of as many standardized
procedures and inputs as possible

STRATEGY 5:

Customize the products but
automate the processes
("FMS" Analogy)

IMPLEMENTATION:
Maximize the capability of the
organization to produce customized
products at a low price through the
use of highly flexible process
techniques and/or automation

Good examples of these strategies can be found in the Japanese auto

industry, where Toyota and other local automakers developed an integrated

engineering and manufacturing approach that resembles Strategy 4.

Extremely low sales in Japan after World War II (total Japanese car and

truck production in 1950 equalled merely one day of U.S. output), despite

10

www.manaraa.com

nearly a dozen producers by 1960, as well as rising demand for a variety of

models, encouraged Toyota and then other Japanese automakers to focus first

on developing efficient design and production methods for small lots or

batches, and then on increasing product variety - in effect, end-product

customization. As volumes increased, companies gained more efficiencies

through larger scales of operations, making it possible for Japanese

automakers to combine remarkable productivity levels in manufacturing with

a variety of products tailored to domestic and export markets. The history

of Toyota from around 1948 through the 1970s reveals, however, that the

company v/ent through a long series of steps - first introducing more

controls over its engineering and manufacturing outputs, and then gradually

adding moi-e product variety, volumes, and automation. But the eventual

result wa ; a more flexible factory model -- actually, an integrated

engintnerin'5 end manufacturing philosophy and organization - than had

existed pr;viously:

TOYOTA I ROOUCT-PROCESS DEVELOPMENT
1. Low N/oli;me, Low Variety Production

Orgaiiizacional Centralization
2. Product Variety Limits

3 Volume leveling
4. Process Analysis/R&D
5. Establishment of Good Process Techniques
6. Standardization of Procedures
7. Stanciardization of Components
8. Extension of Worker Job Routines
9. Volume I icreases
10 Seleciive Introduction of Automation/More Process R&D
11. Increase in End-Product Variety
12. More Automation/Process R&D
13. More Product Variety
14. Extension of the System to Other Locations
15. Conti lua' Improvement

11

www.manaraa.com

Industries such as machine tools, aircraft, specialty motors, construction

or agricultural equipment, and defense systems have faced similar problems

as Toyota and the Japanese automakers once did. Their design and

manufacturing organizations might also be viewed as moving from Strategy 1

or 2 to Strategies 4 and especially 5, bypassing Strategy 3. Customers of

these products often require unique or customized features, for different

types of applications. As a result, the producers need to design and make

products in small batches, with varying degrees of customization. Since

development often requires high levels of precision and highly skilled,

expensive workers, products may become expensive. This is a major reason

why manufacturers of machine tools, aircraft, specialty motors, construction

or agricultural equipment, and defense systems have led in the installation or

development of FMS technology, which provides the capability of producing

products with the precision and efficiency of an automated factory and the

customizing capability of a job shop or batch-processing organization.

°

In semiconductor design, one finds as well a movement from Strategies

1 or 2 to Strategies 4 and 5, as companies have attempted to respond to

various customer needs more effectively by exploiting new technological

capabilities. For specific applications, design times can range from a few

hours for a standard chip to years for fully customized chips, with

comparable differences in costs. As demand for application-specific chips

has risen, and customer needs have become more predictable, companies have

succeeded in developing highly automated equipment to design standardized

gate arrays, and then standardized modules or cells, to gain traditional

large-scale efficiencies -- in engineering as well as in manufacturing.

12

www.manaraa.com

Companies then add the necessary customization to their products toward the

end of the processing cycle, allowing producers to meet different customer

q
needs at competitive prices.

Another concept usually associated with manufacturing that has brought

increasing standardization and rationalization to engineering activities is

group technology. The basic idea here is to maximize efficiencies by

grouping together similar parts, processes, problems, or tasks, using some

sort of classification and coding scheme. Job shops and batch-processing

organizations tend to treat each part they design as unique in both design

and manufacturing. But, over time, there often appear many similarities in

shapes anr| processes among at least some of the components in production,

allowing various companies to report benefits in both cost and quality

through increased standardization, rationalization, and simplicity, in general,

this seems to be because performing similar activities together avoids wasted

time in chnngng from one activity to another; standardizing closely related

activities and focusing only on distinct differences avoids unnecessary

duplication of effort and places more effort where it is most important;

efficiently storing and retrieving information related to recurring problems

reducos search time for the information as well as eliminates the need to

solve a problem again. '^

L.arge-scile software development is a particularly appropriate case to

study the application of manufacturing-type strategies to engineering

becauiie, not only is this a growing field providing a product essential to

many mdustrios, but it is often considered to involve primarily design rather

13

www.manaraa.com

than maniifacvuring activities. This can be seen in a commonly cited

breakdown of life-cycle cost components for software: 10% of total costs

devoted to requirements definition, specifications, and design; 7% to coding;

15% to testing; and as much as 70% to maintenance, which involves a

repetition of earlier steps in order to produce an enhanced or corrected

design.^ Moreover, while software has been evolving from a highly-skilled,

even artistic or craft-like activity into a discipline containing many

attributes of scientifically and mathematically-based engineering practices,

organizational and strategic rationalization seems to have proceeded slowly;

and demand for applications software in particular has continued to outpace

the capacity of companies to supply products. It seems well worth

determining why and how some firms have decided that software engineering

need not forever remain in a job-shop or, at best, a batch -mode of

operational management and efficiency.

II. THE S0F1 WARE INDUSTRIES IN THE U.S. AND JAPAN

Markttt Comparisons

If generil tendencies are different for firms in different countries,

differences in industry structures and markets may be key to the

explanation. The software industries and markets in Japan and the U.S. do

exhibit some significant differences, to which firms might be reacting in

determining nanagement strategies for software product and process

development.

14

www.manaraa.com

Both the U.S. and Japan had in common rapid market growth combined

with industry shortages of engineers. One U.S. estimate claimed that

software demand was growing at 20 to 30% annually while the supply of

programmers was increasing at the rate of merely 3 to 4% per year.^'^ U.S.

companies needing customized applications software for mainframes typically

had a 3- to 4-year backlog.'"' Although some producers have attempted to

rationalize their operations along the lines of Strategy 4 or 5, it appears

that many U.S. software firms have also attempted to develop a few

excellent products and then sell them to large numbers of customers. This

can be seen in the fact that about 60% of U.S. software sales in a market

valued at $10 billion in 1982 and about $30 billion in the mid-1980s were of

standardized or "packaged" programs (Strategy 1 or 2)

.

The U.S. market was also becoming increasingly biased toward small

machines. About 15% of programs by value were for mainframes and office

or minicomputers; the rest were sold for personal computers. ' About 70%

of the total market consisted of systems software -- operating systems,

database management systems, telecommunications monitors, translators,

utilities -- and the rest applications software, ranging from spreadsheets for

personal computers to simulation packages for supercomputers. Another

trend was the increasing power of personal computers, which in 1987 were

exhibiting similar speed and memory capabilities as mainframes of only a few

years earlier. This was increasing the size and complexity of programs even

for small machines and decreasing the historical borders of classifications

such as "personal, " "mini, " and "mainframe, " as well as forcing software firms

to write programs for a range of machines, further exacerbating the shortage

15

www.manaraa.com

1 c
of software engineers. °

Japanese demand for software programmers was increasing at about 26%

per year, compared to growth in their supply of about 13% annually,

according to a 1986 estimate. This trend was expected to result in a

shortage of 600,000 Japanese programmers by 1990.' This was less of a

shortage than in the U.S., although the Japanese software market was about

one-fifth the size of the U.S. market, including the estimated value of

systems software bundled with hardware Cin the U.S., systems software was

usually sold separately). Japanese also wrote the vast majority of their

programs for large machines, since personal computers were slower to

diffuse. One, perhaps related effect, was that Japanese buyers continued to

demand unique products in high numbers. In fact, 95% of Japanese software

sales were customized programs almost exclusively for mainframes or

1

8

minicomputers, compared to about 30% in the U.S. '°

As discussed in the conceptual framework presented earlier in this

paper, the shortage of programmers and the demand for customization might

have persuaded at least some Japanese applications producers to standardize

or rationalize their development operations while continuing to produce

differentiated products for their customers. This would involve opting for

either Strategy 4 or 5. The techniques and technology to accomplish this

rationalization have been under development in both Japan and the U.S.

since the 19S0s, when practicioners found that systematic methods of

analysis as well as concepts or techniques borrowed at least in part from

science and mathematics were useful in software environments. '^ There was

16

www.manaraa.com

surprising wide agreement in the academic and business communities by the

mid-1980s on what constituted "good" practices and tools. But disagreements

remained regarding the nature of software development (art vs. science vs.

engineering).-^^ And, as the survey revealed, there are fairly wide

differences among firms in the degree to which similar practices and tools

were being emphasized.

The Field of Software Engineering

Led by engineers at firms such as IBM and TRW in the U.S., the

emerging discipline of "software engineering" has produced technologies and

methods such as high-level languages; automated support tools for design,

coding, documentation and testing; workbenches; prototyping techniques;

program libraries; quality metrics; designs relying on structured programming

and data or procedure abstractions; and techniques for project management

and control.^' Yet, for no doubt a variety of reasons, related or unrelated

to the nature of software technology or debates about its characteristics,

software management does not seem to have proceeded as rapidly or

confidently as tool and method technology that primarily facilities the work

97
of individual engineers or small groups. "^"^

In "hard" industries such as automobiles, machine tools, or even

semiconductors, there was a tendency of companies to shift more of their

emphasis to rationalizing or innovating in process technology once the

product technologies stabilized. This stabilization of product technology

allowed new production organizations, such as the mass-production factory,

17

www.manaraa.com

to emerge and dominate an industry, at least until market demands changed

and competitors discovered superior modes of production to meet the new

requirements. "^"^ A key question engineering organizations might ask is

whethar their product technologies exhibit enough stabilization to consider

further rationalization of the development process.

With regard to software, one might argue that product technology is

stabilizing While operating systems and applications like banking programs

have changed in complexity as, say, cars have, distinct product types have

appeared and become rather standardized in terms of functions and customer

expectations. The huge share of the U.S. software market (nearly 60%)

devotffd to non-customized "packaged" software indicates clearly that this is

9 1
taking place. Furthermore, the survey reveals that many managers in both

the U.S. ;-:nd Japan, especially in applications facilities, found much of the

software t'ley were developing as reusable in a recent sample year and some

reused large percentages of code (see table below).

18

www.manaraa.com

PERCENT OF CODE CONSIDERED REUSABLE AND REUSED

Notes: Asterisk (*) indicates author's estimate based on averaging of

multiple company statistics.

% Rework Allowed refers to the maximum percentage of code a

manager would allow to be reworked before the module would no
longer be classified as reused.

Applications Producers
Japanese
Japanese
Japanese
Japanese

US
US
US
US
US
US
US
US
US
US

Systems Producers
Japanese
Japanese

US
US

% Reusable

15

35
40

30
5

20
50*

5
15

1

10

25
75

85

40
15

% Reused

8

55

% Rework

20 40

10

www.manaraa.com

"Factory" Approaches in the U.S. and Japan

At the operational level, one way to rationalize a complex processing

activity activity is by centralizing the locus of activities to gain certain

economies of scale or scope; providing R&D for the relevant process

technologies; and integrating technologies with policies defining tools,

methods, or procedures in a way to enhance organizational productivity.

Historically, production organizations with these characteristics emerged

during the 18th and 19th centuries in Britain, Europe and the United States

in the textile industry and then gun-making. They were called "factories,"

and they institutionalized several innovations intended to raise worker

productivity and lower unit costs: integration of various production

processes in a large, centralized facility; close physical coordination of the

flow of each process; division and specialization of labor; mechanization of

tasks; and rigid accounting controls.-^'

The term "factory" for software is somewhat of a misnomer, in that

software development includes planning, engineering (design), production

(coding and testing), and maintenance (redesign) activities; and many

software facilities are engaged in customizing products or developing unique

products such as operating systems or data base systems. The first

American company to attempt to implement a factory model for customized

applications software was the System Development Corporation (SDC), then a

Burroughs subsidiary (now part of Unisys) that had been one of the

contractors of the SAGE air defense system when it was part of the Rand

Corporation. SDC developed real-time software primarily for government

contracts, and in the mid-1970s put together an integrated set of tools

20

www.manaraa.com

(program librrry, project databases, on-line interfaces, and automated support

systems for v'^rification, documentation, etc) that were supposed to work in

conjunction with a set of standardized procedures and management policies

for program design and implementation. This system SDC copyrighted under

the name ' Tht? Software Factory."

SDC engineers were particularly interested in dealing with five common

problems in software development; analogies to these appeared in other

engineering and manufacturing activities as well: (11 Lack of discipline and

repeatability or standardized approaches to the development process, with the

result that SDC was continually reinventing products and processes, and not

becoming as proficient at development or project control as managers

wanted. (2i Lack of an effective way to visualize and control the

production process, as well as to measure before the project was completed

how well code implemented a design. 3) Difficulty in accurately specifying

performance r'^quirements before detailed design and coding, and recurrence

of disagmem-^nts on the meaning of certain requirements, or changes

demanded by the customer. 4) Lack of standardized design, management, and

verification tools, making it necessary to reinvent these from project to

project. 5) Little capability to reuse components, despite the fact that many

application areas used similar logic and managers believed that extensive use

of off-the-shelf software modules would significantly shorten the time

required for software development. "^^

There were serious implementation problems with the factory concept as

applied at SDC. As discussed in another paper, project managers did not

21

www.manaraa.com

like giving up control of development efforts to a centralized facility; there

was not always a steady flow of similar work into the factory; programmers

seemed to dislike the rigid environment and reusing code from a central

source. Overall, it seems that management attempted to impose the factory

infrastructure of tools and methods on both managers and programmers

without preparing both personnel and the workflow to the new system. In

any case, SDC gradually abandoned the factory experiment by the late 1970s,

although it has continued to use many of the factory procedures and at least

one of the tools. ^^

In contrast, the factory concept has found more of a following in

Japan, beginning with Hitachi's opening of the world's first facility called a

software factory in 1969 and then Toshiba s in 1977.^^' Key managers

responsible for software development at these two firms as well as at NEC

have also indicated they were influenced by SDC attempts to discipline

software development as early as the 1960s. ^ This does not mean that the

Japanese were choosing to develop radically different technology; in fact, a

recent survey comparing U.S. and Japanese software practices and various

other articles maintain that the type of technology for software development

Is quite similar in Japan and the U.S. The difference this survey found was

that Japanese firms appeared to be developing and using recommended tools

and methods more systematically than their U.S. counterparts.'^'^

In general, however, as in the manufacture of automobiles and other

products, the Japanese software producers appear to have set high standards

for process analysis and defect control, as well as for general production

22

www.manaraa.com

management and productivity. Reports on recent developments in software

engineering at large Japanese firms seem to fall into four categories, all of

which writers have assumed represent good practice and a departure from

U.S. norms i"^"^

attempts to exploit Japanese traditions of teamwork, discipline, and
individual attention to quality by developing software tools and planning
or reporting systems that facilitate group programming and a teamwork
methodology throughout the software life cycle.

quality control techniques designed to catch bugs early, before they
become difficult to fix.

national and company efforts to improve software quality and
productivity through reusability of software modules and automation of

software production (code generation).

construction of large, factory-like facilities to integrate the entire
process of software development. "^^

Government and private surveys have also expressed concern about the

impact of these developments on what many Americans have felt was an

unassailable U.S. lead in software engineering skills. For example, a U.S.

Department of Commerce report asserted in 1984 that the Japanese were

more "disciplined" and thus were placing more emphasis on developing tools

and "factories," while U.S. programmers suffered from viewing software

development too much like a "craft":

The Japanese have... made impressive gains in the development of

software tools and have encouraged their widespread use within their

software factories to boost productivity. . .By contrast, while the United
States is developing software engineering technology, the use of tools

in U.S. firms is quite limited. . . Many U.S. software companies consider
programming a craft and believe the future strength of the industry lies

in its creativity rather than a disciplined approach to software
development as do the Japanese. "^^

23

www.manaraa.com

A 1985 article in the Electronic Engineering Times similarly claimed the

Japanese were more effectively utilizing team or group approaches, as well

as developing unique team-oriented software tools, while Americans were

were becoming overly dependent on small groups and highly skilled

individuals:

"[T]he approach to software technology taken by major developers in

Japan, such as NEC, Fujitsu Ltd, and Hitachi Ltd., universally strive to

harn«;ss that tradition of excellent teamwork. . . Each of these developers
has automated versions of planning and reporting systems that enforce
a strict teamwork methodology through the complete life cycle of a

computer program -- from planning to design to maintenance, and
without coding, since high-level language-source codes are automatically

produced from the design documents.

. . . Until now, the Japanese have been hampered in their software
development efforts by a lack of team-oriented tools. The tools

borrowed from the United States simply do not fit the Japanese culture
because they put too much control in too few hands.

In Anerir.a, industrial software development is generally done in groups
that are as small as possible to minimize the communication problems
among people. That makes the knowledge of each individual
programmer a critical factor to the success of any software-
development project. But... that is just not tolerable in the Japanese
culture.

As a consequence, the Japanese have had to perform basic research into

software tools that can be wielded by many hands at once. Npbody
else was going to develop group-programming tools for them."'^^

Another trend perhaps was the potential for rapid dissemination of

software tooir and expertise in Japan, because industry activity was so

concentrated at the top four computer manufacturers - Fujitsu, NEC,

Hitachi, and Toshiba. The basic industry consisted of 450 companies

registere<J as members of the Japan Information Service Industry

Association.*^' But most of these were extremely small in terms of

employees and revenues, although 17 companies producing software as their

24

www.manaraa.com

major business had 1000 or more employees in 1983. An estimated 50% of

all the software Japan developed came included (bundled) with large and

medium-size computer hardware manufactured primarily by the top four

computer companies. NT&T and Mitsubishi Electric were the only other

significant Japanese producers of systems software, excluding subsidiaries of

U.S. firms. 2^

Not only did NEC, Fujitsu, and Hitachi rank one, two, and three in

software revenues in Japan. ^^ These three companies have also transferred

much of their technology and development tools to subsidiaries, which ranged

in size from a few dozen employees to nearly 2500. Fujitsu, for example,

had 52 software subsidiaries in 1986, Hitachi 24, and NEC 21.'*' Two of the

top five independent software producers in Japan, Nippon Business

Consultants (^1 in sales in fiscal 1983) and Hitachi Software Engineering

(#5), were Hitachi subsidiaries.^'^

Japanese computer companies, like Japanese firms in other industries,

despite some similarities, were still not monolithic in their approaches to

software development.^*^ While Hitachi and Toshiba claimed publicly to

operate "software factories," NEC and Fujitsu did not. There was not even

a consensus at NEC and Fujitsu that a "factory" was an appropriate model

for software development; at least some managers at these firms felt

software was essentially a "design" activity unsuitable for "mass

production .

"^^ Fujitsu also called its large-scale applications facility an

"Information Processing Systems Laboratory." Nevertheless, NEC and Fujitsu

still produced software centralized, tool-intensive environments housed in

25

www.manaraa.com

large facilities officially designated as "factories." And, like Hitachi and

Toshiba, both companies appeared to be rigorously applying to software

hardware-type statistical quality control, inspection practices, and quality

1 45circles. '^

Since the dissolution of SDC's Software Factory, SDC and other

American firms appear to have preferred designations such as "laboratory" or

"systems development center," or no label at all, to designate their software

organizations. " Yet many U.S. companies, such as TRW, IBM, Boeing,

appear to have gone considerably beyond the SDC Software Factory

experiment in studying tools and methods for design and testing, as well as

programming environments and managerial aspects of large-scale software

production.^' Yet to be answered, however, is the question of what degree

of integration and standardization among people, systems, functions, tools,

methods, inputs, and the like seems appropriate to distinguish a "software

factory" from simply a large facility housing discrete groups of engineers, it

seems plausible as well that at least some U.S. firms have recogized a need

to rationalize software development and today operate in a manner

sufficiently integrated, standardized, and strategic so that they might as well

be called "flexible factories," especially is measured by the ideals SDC

originally set out to implement.

26

www.manaraa.com

III. THE SURVEY

Methcdol iKjy

The survey was designed to determine where U.S. and Japanese

companies stand in relation to a set of criteria suggested by the SDC

Software Factory experiment. In particular, it was thought that mapping

companies along the spectrum that emerged would make it possible to

examine if several hypotheses about software organizations and the U.S.-

Japan comparison, described later in this section, were true or not.

Major producers of large-scale systems and applications software in

Japan and the U.S. were identified through public literature and discussions

with industry experts. All the Japanese firms contacted filled out the

survey; the vist majority of U.S. firms contacted also decided to participate.

To improve thi? comparability of responses, the survey was sent to managers

of (1) facilitier. producing operating systems or network systems software for

mainframes nr minicomputers; and (2) facilities producing real-time

applications or control programs for mainframes or minicomputers. Two

managers at oach type of facility either responsible for overall software

engineering management or with sufficient experience to present an overview

of practices for the entire facility, were asked to respond About half the

companies returned two completed surveys for each type of facility; these

answers Wfsre averaged. Questions and answers were often clarified through

discussions with the respondents. While the Japanese sample size is small,

the surveyed firms account for the vast majority of software written and

sold in Japan as indicated in the previous section.

27

www.manaraa.com

The survey criteria, and answers key, were as follows:

SURVEY ANSWERS KEY:
4 = CAPABILITY OR POLICY IS FULLY USED OR ENFORCED
3 = CAPABILITY OR POLICY IS FREQUENTLY USED OR ENFORCED
2 = CAPABILITY OR POLICY IS SOMETIMES USED OR ENFORCED
1 = CAPABILITY OR POLICY IS SELDOM USED OR ENFORCED

= CAPABILITY OR POLICY IS NOT USED

1^ TECHNOLOGICAL INFRASTRUCTURE

A. Centralization of development for a distinct software product family

(such as an operating system like IBM's VM or DEC's VAX/VMS) in a

single location or directly linked sites operating as an integrated unit,

rather than decentralizing development in independent sites.

B. A uniform set of specification, design, coding, testing, and
documentation procedures used among project groups within a

centralized facility or across different sites working on the same
product family to facilitate standardization of practices and/or division

of labor for programming tasks and related activities.

C. A centralized program library system to store modules and
documentation

.

D. A central production or development data base connecting programming
groups working on a single product family to track information on
milestones, task completion, resources, and system components, to

facilitate overall project control and to serve as a data source for

statistics on programmer productivity, costs, scheduling accuracy, etc.

E. Project data bases standardized for all groups working on the same
product components, to support consistency in building of program
modules, configuration management, documentation, maintenance, and
potential reusability of code.

F. A specific group or groups designated to develop and disseminate
methodologies and tools to automate tasks such as requirements
specification and design, coding, documentation, system testing and
debugging, as well as to facilitate standardization of practices and
division of labor, and effective managerial control over all programming
activities

.

G. A system interface providing the capability to link support tools,

project data bases, the centralized production data base and program
libraries.

H. Automated or semi-automated integration of applicable data from

28

www.manaraa.com

support tools and development data bases with management control

systems (project data bases and the central production data base), for

each phase of program development; and the utilization of this

capability to facilitate budgeting, forecasting, maintenance, and overall

life-cyle cost control on current and future projects.

II. METHODOLOGY & POLICY INFRASTRUCTURE

A. Use of a standardized design language

B. Use of a standardized module-specification language

C. Use of a standardized coding language

D. Emphasis on high-level abstraction (data-type or procedure abstraction;

object rather than variable orientation)

E. Planning for maintainability at the module-design level

F. Planning for reusability at the module-design level

G. Planning for portability at the module-design level

H. Monitoring of how much code is being reused

I. "Layering" of reused modules from the program library, along with
newly written code, to create new programs

J. Cataloging for the program library of common functional modules (e.g. a

date verification routine)

K. Cataloging for the program library of data abstraction modules (e.g.
table or linked-list managers)

L. Writing of documentation to accompany modules placed in the program
library

M. Requirement that, if changes are made in the code of a module in the
program library, the documentation must also be changed

N. Formal management promotion (beyond the discretion of individual

project managers) that new code be written in modular form with the
intention that modules (in addition to common subroutines) will then
serve as reusable "units of production" in future projects

O. Formal management promotion (beyond the discretion of individual
project managers) that, if a module designed to perform a specific

function (in addition to common subroutines) is in the program library

system, rather than duplicating such a module, it should be reused

29

www.manaraa.com

ADDITIONAL INFORMATION QUESTIONS
(These were confidential; some results are reported in tables and the notes,

without revealing company names.)

Data and Hypotheses

The basi': data from the surveys is summarized below, followed by the

hypotheses tested and the conclusions from the data analysis. The number of

NEC facilities included in the sample is large but also reflects its role in the

Japanese software market. NEC was the largest producer of software among

the Japanese computer manufacturers and had approximately 50% more

software rtjvenues than Fujitsu (#2), and three times that of Hitachi (#3) in

1985.

SURVEY RESULTS: DATA SUMMARY TABLE

I = Technological Infrastructure (32=100%)
II = Policy/Methodology Infrastructure (60=100%)
III = Total Fa:tory Model (92=100%)

@ Indicate?; two responses and averaged or joint responses.

n = 38

Applications Means
Japanese (*)

US.

Systems Means
Japanese (*)

U.S.

OVERALL MEANS
JAPANESE (*)

US.

69

www.manaraa.com

COMPANY/FACILITY

Applications

*NEC(a
*Toshiba Software Factory
*NEC Information Service
*NT&T Comm. & Info. Proc. Lab. (a

*Hitachi Omori Works
*Fujitsu Info. Proc. Sys. Lab.@
*Nippon Systemware
*Nippon Business Consultant
*Hitachi Software Engineering©
*Nippon Electronics Development

TRW
Unisys/Sperry@
Unisys/SDC
Control Data(a

Martin Marietta/Maryland
Hughes Aircraft

Boeing Aerospace©
AT&T Bell Labs
Cullinet
Martin Marietta/Denver
Electronic Data Systems©
Honeywell/Defense Systems©
Draper Laboratories©
Computervision©

Systems

*NEC/Switching Systems
*NEC/Operating Systems
Toshiba Software Factory
*NEC Software
*Hitachi Software Works©
Fujitsu Numazu Factory©
*NT&T Comm. & Info. Proc. Lab.©

Control Data©
IBM Endicott
Data General Westboro & N.C.
Boeing Aerospace©
Unisys/Sperry©
IBM Raleigh
DEC (VMS)

i

www.manaraa.com

RANKINGS: TECHNOLOGY/FACILITY INFRASTRUCTURE

8 Questions; 32=100%

Key:
A.J. = Applications Japan
A.U. = Applications U.S.
S.J. = Systems Japan
S.U. = Systems U.S.
* = Japanese firms

COMPANY/FACILITY

www.manaraa.com

RANKINGS: POLICY/METHODOLOGY INFRASTRUCTURE

15 Questions, 60=100%

COMPANY/FACILITY %
S.J. *NQ.C/Switching Systems 99 Flexible

S.J. *NE.C/Operating Systems 90 Factory
A.J. *NE.C 89 Approach
A.J. *NEC information Service 88

A.J. *Toshiba Software Factory 87

S.J. *Toshiba Software Factory 87

S.J. *NEC Software 87
A.U. TRW 83

A.U. Unisys/SDC 77

A.J. *NT&T Comm. & Info. Proc. Lab. 77

A.U. Martin Marietta/Maryland 76

A.J. *Fujitsu Info. Proc. Sys. Lab. 73

A.J. *Hitachi Omori Works 73

A.U. Unisys/Sperry 72

S.J. *Hitachi Software Works 70

A.J. *Nippon Systemware 70

S.J. *Fujitsu Numazu Factory 68

A.J. *Nippcn Business Consultant 67

A.U. Control Data 67

S.U. Control Data 67

S.U. Data General Westboro & N.C. 63

A.U. Htghes Aircraft 63

S.U. IBM Endicott 62

S.U. Ui'isys/Sperry 62

A.U. CiJIinet 59

A.U. AT&T Bell Labs 58

S.U. Bcein;] Aerospace 53

A.U. Boeing Aerospace 53

A.J. *Hitachi Software Engineering 50
S.J. *N"&T Comm. & Info. Proc. Lab. 48
S.U. DFC (VMS) 48
A.J *Nippcn Electronics Development 48

S.U. IBM Raleigh 43

A.U. Martir Marietta/Denver 43

A.U. Electronic Data Systems 43

A.U. Honeywell/Defense Systems 42

A.U. Computervision 25
A.U. Draper Laboratories 17 Job Shop

33

www.manaraa.com

RANKINGS: TOTAL FACTORY MODEL

23 Questions, 92=100%

COMPANY/FACILITY
S.J. *NEC/Switching Systems
S.J. *NEC/Operating Systems
A.J. *NEC
A.U. TRW
A.J. *NEC Information Service
A.J. *Toshiba Software Factory
S.J. *Toshiba Software Factory
S.J. *NEC Software
A.J. *NT£-T Comm. & Info. Proc. Lab
A.U. Unisys/Sperry
A.U. Unisys/SDC
A.J. *Hitachi Omori Works
A.J. *Fujitsu Info. Proc. Sys. Lab.
S.J. *Hitachi Software Works
A.U. Control Data
S.J. *Fujitsu Numazu Factory
A.J. *Nippon Systemware
A.U. Martin Marietta/Maryland
S.U. Control Data
A.U. Hughes Aircraft
S.U. IBM Endicott
A.U. Boeing Aerospace
A.J. *Nippon Business Consultant
A.U. AT&T Bell Labs
S.U. Data General Westboro & N.C.
S.U. Boeing Aerospace
A.U. Cullinet

S.U. Unisys/Sperry
S.U. IBM Raleigh
A.U. Martin Marietta/Denver
S.J. *NT&T Comm. & Info. Proc. Lab.
A.J. *Hitachi Software Engineering
A.U. Electronic Data Systems
S.U. DEC (VMS)
A.J *Nippon Electronics Development
A.U. Honeywell/Defense Systems
A.U. Computervision
A.U. Draper Laboratories

%
99
91

89
88
86
86
86
86
78
78
75
75
75
73
71

71

71

70
70
70
67
64
63
63
62
61

61

61

58
52

51

51

49
46
46
42
26
23

Flexible

Factory
Approach

Job Shop

34

www.manaraa.com

PROJECT CONTROL AND QUALITY ANALYSIS'^Q

KEY:
A = Avg Bugs Reported By Users Per 1000 Lines of Debugged Code
B = Average Percent of Projects Late in a Recent Year
C = Average Percent of Projects Finished within 5% of Budget
F = % of Total Factory Model Criteria

(HH = 80% or above; H = 70 to 79%; M = 58 to 69%; L = below 58%)
* = Author's Estimate

HH
95 HH
50 H

H
100 H

H
50 H
10 H

100 H
80 H
5 H

20 H
57%

50 M
85 M
50 M
85 M
50 M
64%

FACILITY

www.manaraa.com

REUSBILITY OF CODE AND THE FACTORY MODEL

% Factory = % of Total Factory Model Criteria

(HH = 80% or above; H = 70 to 79%; M = 58 to 69%; L = below 58%)

Facility

www.manaraa.com

HYPOTHESIS 1:

Reasoning:

Result:

The scores of all the facilities in the sample should follow

a normal distribution.

If engineering organizations follow a similar spectrum of

strategies as found in manufacturing organizations, there
should be an observable spectrum of software facilities

roughly corresponding to job shops on the one end, and
flexible factories on the other, with most firms falling in

between in a normal distribution.

Accept hypothesis (kurtosis of 0.31 for the total model).

HYPOTHESIS 2:

Reasoning:

Result:

There should be no significant difference in the average
scores for technology infrastructure between Japanese and
U.S. facilities.

Although the literature suggests Japanese firms have been
more systematic in their use of software tools, it also

suggests that general development of software technology
has been largely similar in Japan and the U.S.

Accept hypothesis.

HYPOTHESIS 3:

Reasoning:

Result:

The average Japanese score for policy/methodology
infrastructure as well as the total score should be
significantly higher than the comparable U.S. scores.

The general literature and information from Japanese firms

suggests at least the larger Japanese computer
manufacturers have been more aggressive in pursuing a

disciplined, even a "factory" approach to software
development.

Accept hypothesis.

HYPOTHESIS 4: Facilities farther toward the total factory model should
exhibit control characteristics one might expect to find in

a large factory-type organization : (A) fewer defects (bugs)
reported by users; (B) more precise project scheduling;
and (C) tighter project cost control.^"

Result: (A) Accept hypothesis.
(B) Accept hypothesis.

37

www.manaraa.com

(C) Reject hypothesis.

HYPOTHESIS 5: Facilities that exhibit another characteristic one might
expect to find in a large factory-type organization--
greater use of standardized components, i.e. higher rates

of reusability of code -- should also score high on the
total factory criteria.

Result: Accept Hypothesis (Tentatively)

Comments

Formal hypothesis tests for 1, 2, and 3, and other data summaries, can

be found in the Appendices.

Facilities or firms in the survey formed a statistically significant

normal distribution, moving upward from what has been equated to a job-

shop approach to a flexible-factory approach. Without Draper and

Computervision, the sample formed a near perfect normal distribution. With

or without the outliers, U.S. producers tended to be toward the middle

(batch mode) or bottom (job shop), and Japanese toward the top (flexible

factory)

.

In fact, despite the smaller size of the Japanese group, Japanese

companies accounted for 13 of the top 17 facilities ranked by the total

factory model criteria. NEC, which has not publicly adopted the "software

factory" concept, and its subsidiaries consistently led in the rankings. The

company that follows the NEC facilities, however, is a U.S. firm -- TRW.

38

www.manaraa.com

Also noteworthy is Toshiba, which develops both applications software and

mini-computer operating systems in the same facility. Since NEC, TRW,

Toshiba and other firms in the applications area customize their end

products, they, as well as systems producers, which develop unique operating

systems and other basic software, seem to fit the "flexbile factory" model

best. Another US applications producer making similar types of applications

programs to TRW -- Draper Laboratories -- scores lowest on all criteria.

Draper and Computervision were "outliers" in the sample but seem to fit the

highly creative job-shop model best. Both companies, especially Draper, are

known as producers of innovative software technology.

Only 4 of 17 Japanese facilities scored below the median for the total

factory criteria. Three of these -- Nippon Business Consultant, Hitachi

Software Engineering, and Nippon Electronics Development -- to a large

extent served as manpower suppliers to their parent firms (Hitachi in the

case of the first two and NEC in the case of the last one) and have not

focused on developing their own centralized program libraries, tool groups,

etc., but tend to use those of their parent firms.

The greatest deviations (more than 1.2 points) among firms were on the

following criteria: I.G (system interface linking tools and data bases); II. B

(standardized module specification language), H (monitoring of reused code),

J and K (cataloging modules for the program library). Japanese firms tended

to score higher on 11. F (planning for reusability) and II. O (formal

management promotion that modules be reused from the program library), as

well as It. J and K (see the Appendix for data summary). These were all

39

www.manaraa.com

policy or methodology measures, except for the tool-database interface.

With regard to hypotheses related to performance, the data is sketchy

for many firms, either because they did not track these measures or would

not report them in the survey. The data available shows that some firms

scoring low on the factory model, especially Japanese firms, still did well in

the control and quality measures. And some firms scoring high on the model

did not do so well in the control and quality measures. On average,

however, firms closer to the factory model scored better in quality (bug

control) and schedule control. This was not so obvious for cost control,

however, leading to the rejection of Hypothesis 4c. The explanation may be

that many firms place a higher emphasis on completing a project on schedule

and with as few defects as possible, and they are willing to spend beyond

the budget to accomplish this, even in a "factory" environment.

On the other hand, additional information questions in the survey

indicate that performance criteria managers used were very similar in the

U.S. and Japanese firms, and they frequently mentioned meeting cost, quality

(reliability, specifications), and delivery targets (see Appendix) . There was

somewhat more emphasis on "productivity" in the Japanese responses, but the

answers show that practically all the responding managers valued the basic

control measures one would expect to have in a disciplined factory or

engineering environment.

With regard to reusability, slightly less than half the firms or facilities

in the survey provided data on this; many admitted they did not track this

40

www.manaraa.com

measure. The data available suggests reuse is higher on average at firms

scoring 70% or above in the survey. The hypothesis that firms with high

reuse rates were also scoring high on the factory critieria seems acceptable,

although the evidence does not seem that strong, and the sample of

reporting firms is small. The five firms or facilities that reported reuse

rates of 35% or above averaged 73% on the technology criteria, 66% on the

policy criteria, and 68% overall, scores only 1 or 2 percentage points above

the sample means for these categories. Furthermore, not all firms scoring

high on the criteria were reusing lots of code, and not all firms scoring low

were poor in reusability. One firm with a very high rate (50%) scored in

the low range in the survey criteria, and another with 40% reusability

scored in the medium range. And one firm scoring over 80% in the criteria

reported a relatively low reusability rate (15%).

A disciplined, centralized environment may provide the technology and

methods to facilitate reusability, but managers still need to develop a

strategic commitment and program to optimize for this objective. High reuse

of code may also simply require that a facility focus its product lines. ^^ In

addition, there are other ways of thinking about reusability other than

simple blocks of code. Toshiba, for example, keeps "reuse" figures for whole

program parts, as well as skeletons of modules, utility subsystems, and

support tools. ' The topic of reusability will be treated in the case studies,

but is apparently a complex subject. It is also a topic dealt with extensively

in software engineering literature.'''^

41

www.manaraa.com

IV: IMPLICATIONS FOR ENGINEERING MANAGEMENT

The factory model seems to bring benefits in quality control and

scheduling control. There is also considerable evidence that, through

reusability, enormous improvements in nominal productivity (lines of code

produced per programmer in a given time period) are also possible. Why

might this type of environment lead to improvements in engineering

management and performance? At the same time, how much might a

commitment to a factory rather than a laboratory model constrain the

"flexibility" of a firm, in terms of meeting different or changing customer

needs or accommodating technological change?

Scale to Justify Process R&D

Numerous tools and new methods or techniques have greatly improved

productivity in software, as well as in probably every other field of

engineering or manufacturing. Factory-type centralization, whether it is

geographic or electronic, and the guarantee that large numbers of

programmers will use the results of this investment, may be important for a

firm to justify the costs of continuous tool or method development and

funding of software-engineering groups. In NEC, Hitachi, and Toshiba, for

example, specific engineering departments have been formed to keep track of

the latest developments in software engineering, and experiment with their

own ideas and tools. They also have the authority and responsibility to

introduce what they decide are "good practices" into facilities or subsidiaries

housing thousands of programmers.

42

www.manaraa.com

The degree of centralization of firms in the sample varied; NEC, for

example, was more decentralized than Hitachi, though more standardized. In

all, 17 of the 38 facilities in the survey responded with answers of 4.0 or

3.5 to question I.F (emphasis on having a specific software engineering tools

and practices group). Since only seven were from the U.S. (Boeing, TRW,

Unisys/SDC, Hughes, IBM, and Control Data) , 60% of the Japanese respondees

and only one third of the U.S. respondees fully used this type of a group.

Institutionalizing Good Technology and Practice

It is not clear how centralized software development should be to meet

different customer needs or to prevent reaching a scale where the numbers

of people become too large to manage. In general, however, the basic tools

and procedures proposed in the survey criteria represent recommended "good

practice" in the software industry since at least SDC and the mid-1970s

Software Factory experiment. In a practical sense, one might thus view the

factory analogy as a strategy moving away from the undisciplined atmosphere

of a job shop or laboratory; and as a mechanism for management to

introduce and then require the use of "good" technologies and practices

throughout the appropriate parts of an organization, rather than leave

technical choices, tool development, and the like to individual discretion.

There may be some time lag in adopting the latest methods or tools, for

design, testing, reusability, maintenance, or whatever But companies with

formal commitments to understand and then disseminate new process

technology may find that the knowledge and support levels of their average

43

www.manaraa.com

engineers, over time, are higher than in firms without comparable strategic

commitments to institutionalizing good technology and practices.

There is considerable evidence that factories in operation are promoting

skill development with extensive training programs. "^ For example, dividing

up tasks or creating reusable and easily maintainable program parts as done

in several Japanese facilities require fairly sophisticated programming

concepts, such as data or procedure abstraction (otherwise no modules would

be reusable), or even "layering" of reused modules with newly written

code. Toshiba has made abstraction central to its reusability strategy,

after realizing that the higher the level of abstraction in newly developed

code, the greater the number of reused modules and the greater the

frequency of their reuse. ^^ Other Japanese firms were also paying

increasing attention to advanced programming concepts and systematically

teaching these to employees. ^°

In addition, given the percentage of costs devoted to maintenance over

the lifetime of a software product, a firm should clearly want to maximize

its capabilities in this area. The factory environment should make it easier

for a company to enforce the key strategies usually cited for improving

software maintenance: clearly structured and modularized program designs

and coding; documentation sufficient so that future programmers can

understand the code, either to fix problems or to add functions; thorough

testing in order to catch bugs early, before they become too expensive and

perhaps impossible to fix; and use of already-generated (and tested) modules

of code.^'

44

www.manaraa.com

Process Efficiency Through Teamwork and Communication

One of the key and frustrating conclusions in Brooks' testimony was

that the usefulness of "man-months" as a unit of measurement for estimating

time and manpower on software projects was a myth. His experience was

that adding people to a big project increased the amount of time that had to

be spent on training the new people and on communicating: "Men and

months are interchangeable commodities only when a task can be partitioned

among many workers with no communication among them . . .Adding more men

then lengthens, not shortens, the schedule. "^° Brooks thus came to prefer

only "a few good minds doing design and construction," rather than the 1000

or so people who worked on OS/360. "

But, if an integrated engineering and production environment -- a

"factory" as defined in this paper -- truly facilitated standardization, division

of labor, general use of good tools and practices, and effective

communication and teamwork, then it might make Brooks' observation much

less relevant, or at least increase the size of teams that can still be

effective and expand management alternatives for dealing with tardiness or

other problems. In fact, some managers of software factories in Japan

appear to have already realized this. The two individuals responsible for

developing Hitachi's software factories, when asked specifically what they do

when projects are late, admitted they do not actually follow Brooks' advice.

They add people -- not just anybody, it is true, but their best available

people -- and this has proved to be more effective than not adding people.

45

www.manaraa.com

at least within their factory system. ^ Additional questions asked in the

survey, as well as public information, also indicate Japanese software

managers can estimate time and manpower needs with remarkable accuracy,

using historical databases relying on man/month measures.

Organizational Focus on Productivity and Quality

One might argue that, when large numbers of people are involved, a

factory approach is the best way to bring together the necessary discipline

and integration of tools, procedures, and management controls to facilitate

standardization and other measures that allow managers and engineers to

Increase productivity and the quality (lack of defects) of their products. On

the one hand, in facilities where managers have precise historical data on

the capabilities and tools their people possess, scheduling and cost estimates,

as well as personnel assignments should be more effective and easier to do.

In the case of Toshiba, an entire factory system has been specifically

maximized to deliver software on time and with minimal bugs, as well as

develop and reuse enormous amounts of code in customized products, leading

to llnes-of-code productivity levels that far exceeded figures reported for

other firms." As In hardware factories, the productivity advantages of

reusing standardized components, or even procedures and tools, often go far

beyond simple output per worker on a given day, by saving engineering and

manufacturing man-hours in design, inspection, rework needed to correct

mistakes In the design or production of new components, and long-term

maintenance. "•^

46

www.manaraa.com

The type of data base provided for in the factory environment on

numbers and types of bugs, as well as solutions, also provides a powerful

means of learning how to produce higher quality products within certain cost

targets. This type of defect and solution analysis, compbined with

productivity and cost estimation, has proved useful in numerous "hard"

industries such as automobiles. Product development teams often do the

same; and there is no reason why engeering organizations cannot continue to

improve their capabilities inthis area. In fact, evidence from the survey and

other articles from Japan indicate that it is possible to make significant

improvements in software quality control and that, as in other industries,

CO
improving quality improves productivity.""*

Reducing Waste and Redundancy

A loosely managed engineering organization may indeed produce highly

creative products. But, if there are insufficient directions, communications,

and controls, different areas of the same organization might repeatedly

design similar or substitutable tools, procedures, or even components--

continually "reinvent the wheel" -- unnecessarily. A factory approach

would reduce this type of wasteful, redundant behavior on the part of both

managers and engineers. Companies need not leave the elimination of these

dysfunctions to chance alone.

For example, if an individual project manager insists it is too expensive

or time consuming for his or her group to write 'inventory-quality software

modules" for program libraries, the organization will create these reusable

47

www.manaraa.com

assets only at the discretion of individuals, not as a matter of policy.

Creating an environment where standardized components can be developed

and reused seems to require that programmers design, code, and document

modules in a standardized way suitable for reusability; place them in an

easily accessible program library or central production data base; and then

reuse them consistently when writing new programs. These three

requirements are primarily matters of strategy and policy; and the third

seems essential to justify the efforts expended and tradeoffs involved in

standardization, documentation, and tool development.

Options for "Flexibility"

Nor do the technologies and techniques developed for the factory

environments have to static. Software-development tools and systems at

TRW, IBM, and SDC, as well as Hitachi and NEC have evolved incrementally

and changed rather significantly over time. The factory approach also need

not prevent an organization from pursuing, simultaneously or subsequently,

other organizational alternatives as its needs change. For example, should a

company want to experiment with different approaches to program design

and management, including bringing some development activities closer to

customers (decentralizing), it might set up separate departments or

subsidiaries.

Fujitsu, Hitachi, and NEC alone in recent years have established nearly

a hundred subsidiaries, to produce a variety of systems and applications

software in less restricted and less centralized environments. These firms

48

www.manaraa.com

also use R&D laboratories, such as NEC's Software Products Engineering

Laboratory or Hitachi's Systems Development Laboratory, to experiment with

different software technologies, separating these activities from "production"

activites in the software factories. Hitachi has also added new departments

for artificial intelligence and graphics to its systems software factory. In

addition, Japanese computer manufacturers have actively transferred their

factory-type programming systems and procedures to selected subsidiaries as

well as other company divisions. ^^

49

www.manaraa.com

K THE SPECTRUM EXISTS: TECHNOLOGY & POLICY

Perh.'tps the most important finding of this study is that engineering

organizations do follow different approaches to mixing their use of

technology-based tools and strategy-based policies or methods in order to

rationalize their development activites. One might think of the distinction

between a factory and a job shop or laboratory as emerging from (1) a

management strategy determined to take advantages of scale, scope, or other

factors that might promote productivity and quality improvements; (2) a

technological infrastructure facilitating this strategy; and (3) a management-

policy and methodological infrastructure effectively integrating the

technology wiiih management objectives and people operating within or upon

the svsteni

.

2^ SOFTWARE IS NO EXCEPTION

The second major conclusion is that software-development organizations

are not exceptions; they, too, exhibit different mixes of technology, policies,

and thus overall strategies and implementation effectiveness. There are

aspects of so'tware development that resemble both engineering (design,

maintenance) and manufacturing (coding, testing, assembly of exisitng

modules wth new code); the entire development cycle of software is also

highly integrated and can be managed with varying degrees of discipline and

standardization, tool-intensity, and the like.

50

www.manaraa.com

Implicit or explicit proponents of the factory model appear to view this

approach as a strategic way to accommodate shortages of programmers and

the increasing demand for high-quality, often customized software. The

rationale one might use to justify this attempt at process improvement in

software engineering seems not so different from what many hardware-

producing organizations learned decades ago: As companies accumulate

knowledge and experience with product development and manufacturing, they

should be able to raise the development process from activities performed by

a few highly skilled individuals, operating in an environment analogous to a

hardware job-shop, to activities performed systematically by individuals in an

organization capable of historical learning, and perhaps some economies of

scope or scale of activities. The latter organization might also benefit from

the same advantages as any large-scale producer of products using carefully

analyzed, controlled, and standardized processes and inputs, and try to avoid

tradeoffs in product quality or features.

A recent article by an IBM manager on the evolution of software tools

and techniques argues as well that firms are increasingly recognizing it is

time to focus more on improving software process management. This asserts

that software engineering began in the IQGOs with a management focus on

the individual engineer or programmer and a technological focus on

techniques such as structured programming. In the next stage, roughly

during the 1970s, experimental techniques became more formal methodologies,

such as stepwise refinement or structured analysis, while managers turned

more of their attention to understanding better the processes involved in

each step of software life-cycle development (for example, from basic design

51

www.manaraa.com

through maintenance).^^ But only in the most recent stage (the 1980s), in

this interpretation, have companies pushed technology development more

toward improving software environments, and have managers shifted their

concerns to process-management issues.

A technological and management change in focus -- from the individual

and individual tools and techniques, to the organization and process

management -- reflects a movement one might expect with any product and

process as firms accumulate experience and as product technologies tend to

stabilize, as suggested earlier in this paper for software. Managers then can

become more "strategic" in two respects: recognizing the need to integrate

better technology, policies, and organizational structure with the overall

goals of the company or business unit; and perceiving these issues on levels

that distinguish long-term from short-term tradeoffs, in the sense that each

decision brings with it certain costs and benefits."' One of the objectives

of managers should also be to minimize tradeoffs, such as product cost

versus quality or functionality.

3^ FLEXIBLE MANUFACTURING CONCEPTS S TOOLS I N ENGINEERING

As discussed earlier in this paper, it is a mistake to think of the

factory model as requiring rigidity in processes or products, or technological

features over time. Manufacturing and engineering organizations in "hard"

industries have found numerous ways to increase their ability to rationalize

development or production while enhancing their ability to introduce variety

in final products. Toyota's small-lot production system exploits

52

www.manaraa.com

standardization and discipline in components and procedures, as well as

easily changeable equipment, to produce a variety of products each in small

or large volumes with astounding levels of productivity. The histories of

how manufacturing firms have improved productivity and product quality may

themselves provide valuable lessons for engineering. In addition, group

technology practices; computer-aided design, engineering, and manufacturing

tools; as well as entire flexible manufacturing systems as in the machine-tool

industry, all incorporate concepts and technologies that are already being

applied in software but can be applied more widely, without necessarily

sacrificing the need for products to meet a variety of customer needs.

These themes, and the actual practices and technologies used in software

facilities that resemble flexible factories, are being treated in the case

studies accompanying this paper.

4^ THE .JAPANESE MAY BE LEADING IN SOFTWARE MANAGEMENT

The survey indicated that Japanese firms or individual facilities, on

average, v/ere considerably ahead of most U.S. firms in the application of

factory-type policies to large-scale software development. The United States

has seen its lead in product engineering and manufacturing skills evaporate

in a broad range of industries: steel, shipbuilding, consumer electronics,

automobiles, semiconductors, computer peripherals, and machine tools, to

name some of the more obvious. The Japanese have also been making

significant strides in computer hardware, including supercomputers.""

Software development benefits from, in addition to a measure of "creativity,"

disciplined procedures, basic mathematical skills, systematic training, support

53

www.manaraa.com

tools, and effective group communication as projects get larger. There is no

reason why the Japanese cannot do well in software; the evidence provided

here and in cases studies, moreover, suggests they may be leading in tool

application and management control.

Arguments will continue whether software development as a process is

more like art than science or engineering, or more like research and

development than manufacturing in a hardware environment. There may be

strong "cultural" or historical tendencies of U.S. software engineers,

especially those who are largely self-educated, to view software as largely a

form of art. Japanese managers and programmers may not have acquired

similar tendencies; and the historical commitment established in other fields

of firms such as NEC, Toshiba, Hitachi, and Fujitsu to promote their skills

in engineering, manufacturing, and quality control may in fact be overcoming

any predisposition of their software people against a factory approach. These

issues will be treated in studies of individual firms.

But the bias of managers regarding this question is not trivial. It may

be at least as important as the characteristics of the technology, to the

extent that managerial (and worker) attitudes constrain or facilitate the

ability of organizations to improve the performance of their people and

systems, as well as the features of their products. But even if one assumes

aspects of the software-development process, such as detailed design in a

large program, are essentially similar to a creative product development, a

firm can stili apply strategic measures to technology development and

utilization, and to policies or procedures, to "rationalize" and improve overall

54

www.manaraa.com

performance. Moreover, if some firms deemphasize discipline and cooperation

while focusing essentially on the individual engineer, the individual tool, or

the final product, then they may not be fully developing - that is,

compared to some of their competitors -- organizational capabilities to

maximize tie performance of their technical people and invested resources.

The apparent superceding of Brooks' "law" in a Japanese software

factory encourages the belief that it is possible to manage software and

perhaps engineering activities more strategically, through a better integration

of technology and management policies. That some firms are closer than

others to impli»menting flexible-factory models also suggests there is nothing

inherent in the technology to prevent the introduction of this approach. If

managers claim a factory environment as proposed in this paper is

undesirable because of the tradeoffs it may entail, they make a strategic

judgement. IF they insist it is technologically too difficult, they exhibit a

conceptual or even emotional bias that, in view of the present study, merits

serious reconsideration.

55

www.manaraa.com

APPENDICES

Formal Hypothesis Tests (1-3)

Hypothesis 1:

www.manaraa.com

Hypothesis 3: Accept (Japanese score for policy/methodology
infrastructure as well as Japanese total score
significantly higher than the comparable U.S.
scores)

Two Sample Analysis Results: Policy Scores

www.manaraa.com

Tota.i Factory Scor?.?. All US a-.d Japan

15

www.manaraa.com

MEANS AND STANDARD DEVIATIONS FOR SURVEY QUESTIONS

SURVEY ANSWERS KEY:
4 = CAPABILITY OR POLICY IS FULLY USED OR ENFORCED
3 = CAPABILITY OR POLICY IS FREQUENTLY USED OR ENFORCED
2 = CAPABILITY OR POLICY IS SOMETIMES USED OR ENFORCED
1 = CAPABILITY OR POLICY IS SELDOM USED OR ENFORCED

= CAPABILITY OR POLICY IS NOT USED

n = 38 (Jap. = 17, U.S. = 21)

L. TECHNOLOGY/FACILITY INFRASTRUCTURE

www.manaraa.com

n. METHODOLOGY & POLICY INFRASTRUCTURE

www.manaraa.com

G

www.manaraa.com

Question: How do you measure the "performance" of your project
managers?

Japanese Applications:
Quality, cost, delivery; leadership, presentation, negotiation ability

Cost: Cost/person and profit/person
Productivity and management of personnel
Productivity: released loc/man month; Cost Productivity: cost/ released

lines of code

US Applications:
1: Don't
2: Quality of product (error-free, minimal rework); delivered on time;

within budget; satisfaction of customer
3: Customer satisfaction in meeting schedules, staying within budget, and

meeting performance requirements
4: Cost/schedule
5: Meeting schedule and user requirements; cost is secondary
6: 1) When they indicate coding is completed; 2) number of bugs reported

in-house or beta-site after coding is completed
7: Budget dollars, schedule performance, technical scope, group turnover,

customer satisfaction

8: Budget and schedule plus quality

9: Cost and scedule performance indexes; rate charts; milestone
completions; lead division interface; customer satisfaction; personnel
management activities

10: Subjectively
11: Schedule aherence
12: Schedule, cost, number of modules forecast vs. actual (yet to be

implemented measurements should include errors or quality of code, and
ease of maintenance)

13: Adherence to schedule; molding of a cohesive group or not

Japan Systems:
1: Growth rate of members through the project; productivity of the

project; quality of the project; experience
2: 170 items related to project control (quality, delivery, cost).

3: Code trace and stress testing with tools or terminals

US Systems:
Meeting functional requirements; schedule
Revenue/cost
Cost/schedule performance
Achieving schedule completion and the amount of defects discovered in

the testing process

62

www.manaraa.com

Question: How do you measure the "performance" of your programmers?

Japanese Applications:
1: Productivity and product quality; source program update frequency of

programmers
2: Capability: loc, specification pages, and test items per person/month,

with adjustments for type of product, correctness, bugs, etc.; separate
categories for analysts, designers, programmers, and test engineers

3: Steps/time
4: Released loc/hour or loc/month
5: Acurracy and quality of the product

US Applications:
1: Schedule; LOC/Complexity; Errors
2: Amount of work completed; correctness of work done; ability to meet

schedule; innovation in solving technical problems
3: Comparisons to peers based on use of performance appraisal forms (20

attributes); feedback from project supervisors concerning performance;
letters of recognition

4: Cost, schedule, quality

5: Project leaders write "Performance Aanalysis" reports on each member
at the end of the project

6: As a function of quality, productivity, contribution

7: Perception. Measure against goals after the period of measurement is

completed.
8: Through A/0 process; speed, accuracy, and quality of final program

product Additionally, teamwork and schedule, and finally,
documentation

.

9: Performance to schedule. Quality of code.
10: Productivity (sloc/mo), meeting schedules, growth
11: Subjectively
12: Judgement based on software size, complexity, implementation

environment, quality, completion relative to projected cost and schedule,
hours worked, cooperativeness, internal and external communication
skills.

13: Schedules, errors in completed code, documentation, maintainability of

code, installability, design
14: Ability to design, function in a group atmosphere, code from specs,

adherence to schedules

Japanese Systems:
1

2

3

Productivity & quality of programs written; experience
Discovered bugs/1000 loc

Lines of code/month

US Systems:
1: Closeness to functional and schedule targets, with acceptable

performance
2: No formulas, but a look a productivity, quality, and leadership
3: Schedule, product quality
4: Schedule achievement and technical review of design, code, test output;

measured number of defects

63

www.manaraa.com

REFERENCES

1.1 am indebted to numerous individuals for suggestions that I have
incorporated into this paper. In the U.S.: John Pilat of Data General;
Wendy MacKay of DEC; Fred George and Mark Harris of IBM; Joel Moses,
Chuck Sabel, Ed Roberts, Eric von Hippel, Tom Allen, and David Finnell of

MIT; Donald McNamara of GE; Suzanne de Treville of Harvard, MIT and the
Helsinki School of Economics. In Japan: Shibata Kanji of Hitachi; Azuma
Motoei of NEC; Yoshida Tadashi of Fujitsu; Matumoto Yoshihiro of Toshiba.
I would also like to thank Peter Freeman and Veikko Seppannen of the
University of California, Irvine, for several important comments and
literature references.

2. See Barry Boehm, "Software Engineering (1976)" in Yourdon, p. 328.

3. See Alfred D. Chandler, Jr., The Visible Hand: The Managerial
Revolution in American Business (Cambridge, MA, Harvard University Press,

1977), pp. 50-80.

4. See William J. Abernathy and James Utterback, "Dynamic Model of Process
and Product Innovation," Omega , Vol. 3, No. 6, 1975, pp. 639-657; William

J. Abernathy and Kenneth Wayne, "Limits of the Learning Curve," Harvard
Business Review , September-October 1974, pp. 109-119; and Robert H. Hayes
and Steven C. Wheelright, "Link Manufacturing Process and Product Life

Cycles," Harvard Business Review , January-February 1979, pp. 133-140, and
Restoring Our Competitive Edge: Competing through Manufacturing (New
York, John Wiley & Sons, 1984), pp. 197-298.

5. An historical analysis of the evolution of the Toyota production
system, and productivity comparisons for the major Japanese and U.S.
automakers, can be found in Michael A. Cusumano, The Japanese Automobile
Industry: Technology and Management at Nissan and Toyota (Cambridge, MA,
Harvard University Press, 1985), pp. 186-319.

6. See Michael E. Porter, Competive Strategy: Technigues for Analyzing
Industries and Competitors (New York, The Free Press, 1980), pp. 34-46,

and Competitive Advantage: Creating and Sustaining Supenqr Performance
(New York, The Free Press, 1985), p. 18.

7. See Michael J. Piore and Charles F. Sabel, The Second Industrial

Divide: Possibilities for Prosperity (New York, Basic Books, 1984). For
more detailed discussions of flexible manufacturing systems see Paul

Kinnucan, "Flexible Systems Invade the Factory," High Technology , July
1983, pp. 32-43; National Research Council, The U . S. Machine Tool Industry
and the Defense Industrial Base (Washington, D.C., National Academy Press,
1983); Ramchandran Jaikumar, "Flexible Manufacturing Systems: A
Managerial Perspective," Harvard Business School Working Paper #1 -784-078,

64

www.manaraa.com

January 1984, and "Postindustrial Manufacturing, " Harvard Business Review ,

November- Dec ember 1986, pp. 301-308. A general review of these new
technologies is J. Meredith, "The Strategic Advantages of New
Manufacturinq Technologies for Small Firms," Strategic Management Journal ,

Vol. 8, No. 3, May-June 1987, pp. 249-258.

8. In a list of 31 FMS installations in the U.S., two-thirds were in these
5 fields (motors -- 6, aircraft -- 6, machine tools -- 2, construction and
agriculturjil equipment -- 3, defense systems -- 3). See Diane Palframan,
"FMS: Too Much, Too Soon," Manufacturinq Engineering, March 1987, p. 36.

9. See Harvard Business School, "VLSI Technology, Inc. (A)" (Case Study 0-

686-128, 1986).

10. See Nancy L. Hyer and Urban Wemmerloc, "Group Technology and
Productivity," Harvard Business Review , July-August 1984, pp. 140-149; and
Harvard Business School, "Note on Group Technology and Cellular
Manufacturing" (Boston, Harvard Case #9-686-098, 1986).

11. These estimates from M. V. Zelkowitz et al.. Principles of

Software Engineering and Design (Englewood Cliffs, N.J.:
Prentice-Hcill, 1979), p. 9. Cited also in Frank, p. 22;

Ramamoorthy, p. 193.

12. See A. Zavala, "Research on Factors that Influence the Productivity of

SoftwKire [development Workers," SRI International, June 1985.

13. Ibid., pp. 10-11.

14. Data fi'om Dataquest and Businessweek , quoted in Businessweek, 11 May
1987, p. 149.

15. U.S. Dep.irtment of Commerce, A Competitive Assessment of the U.S.
Software Industry (U.S. Dept. of Commerce, International Trade
Administration, Washington, D.C., 1984), pp. 19-24, 34-35.

16. See "The Free-For-AII Has Begun: Software Companies Large and Small

are Invading One Another's Turf," Businessweek , 11 May 1987, pp. 148-159.

17. See H Also (Keio University), "Overview of Japanese National Projects

in InFormation Technology," International Symposium on Computer
Architectu --e. Lecture 1, 2 June 1986, Tokyo. Data from a 1986 Japanese-
language whit.3 paper published by the Japan Information Service Industry
Association .

18. Competitive Status of the U.S. Software Industry, pp. 34-35, 40, 42.

65

www.manaraa.com

19. A classic article on this subject is B.W. Boehm, "Software
Engineering," IEEE Transactions on Computers , Vol. C-25, No. 12,

December 1976, pp. 1226-1241.

20. One basic textbook, in a section titled, "Is the Programmer a Scientist,

an Engineer, or an Artist," sees the programmer as primarily an "engineer,"
preferring the scientist label for those doing research or creating new
technology, and the "artist" label for "a small number of people who excel at

their craft to an extraordinary degree," such as "Michelangelo." See Martin
Shooman, Software Engineering: Design, Reliability, and Management (New
York: McGraw-Hill, 1983), pp. 5-8.

21. See C.V. Ramamoorthy et al., "Software Engineering: Problems and
Perspectives," Computer , October 1984, p. 205.

22. This argument is developed in R. Goldberg, "Software Engineering: An
Emerging Discipline," IBM Systems Journal , Vol. 25, Nos. 3/4, 1986, pp.
334-353.

23. See the earlier works by Abernathy, Utterback, Wayne, Hayes, and
Wheelright.

24. U.S. Department of Commerce, A Competitive Assessment of the U.S.
Software Industry (Washington, D.C., International Trade Administration,

1984), p. 34.

25. Data from TRW in the U.S. and Toshiba and Hitachi in Japan indicate
that as much as 60% or more of applications programs and 90% of new
releases in systems software appear to be redundant across different
products, providing potentially high volumes. For a discussion of the TRW
study, see Werner L. Frank, Critical Issues in Software (New York: John
Wiley & Sons, 1983), pp. 74-75. The original citation is Robert Lanergan
and Denis Dugan, "Requirements for Implementing a Successful Reusable Code
Productivity System," Raytheon Co. Missile Systems Division, 1980. Data
for Toshiba can be found in Kim, p. 33, and Matsumoto (1986), p. 5. The
90% figure is for Hitachi Software Works, Shibata interview. Company
names in the survey cannot be released do to confidentiality agreements.

26. Some companies, such as Hitachi, formally organize product-engineering
and manufacturing departments within the same physical facility. For
example, for computer hardware see Hitachi Seisakusho Kabushiki Kaisha
(Hitachi Ltd.), Kanagawa kojo 15 nen no ayumi (15-year history of the
Kanagawa Works, 1978), pp. 129-132; for semiconductors, Musashi kojo 20
nen no ayumi (20-year history of the Musashi Works, 1978), Appendix.

27. See Alfred D. Chandler, Jr., The Visible Hand: The Managerial
Revolution in American Business (Cambridge, M.A.: Harvard University
Press, 1977), pp. 50-80.

66

www.manaraa.com

28. See Harvey Bratman and Terry Court (System Development Corporation),
"The Software Factory," Computer , May 1975, pp. 28-29. A more detailed

discussion of this can be found in H. Bratman and T. Court, 'Elements of

the Software Factory: Standards, Procedures, and Tools," in Infotech

International Ltd., Software Engineering Techniques (Berkshire, England:
Infotech International Ltd., 1977), pp. 117-143.

29. Intervews with David Deaver, SDC Manager, and Clarence Starkey, SDC
Manager, 10/3/86. Also, interview with and SDC/Unisys director of

software engineering, 4/1/87. Name withheld by request of the interview

subject. My thanks to David Finnell for conducting this interview under
my direction, as part of a thesis project. For an analysis of SDC, see

Michael Cusumano and David Finnel, A U.S. "Software Factory" Experiment:
System Devleopment Corporation (MIT Sloan School of Management Working
Paper, 1987).

30. The NATO conference reference comes from Donald McNamara, Program
Manager, Corporate information Technology, General Electric Company,
"Software Factories," Lecture given at the Wang Institute of Graduate
Studies, Lowell, MA., 2 February 1987. See later references for Toshiba
and Hitachi.

31. In developing their production-control system during the late 1960s

and 1970s, Hitachi managers also relied on reports published on SDC's
approaches to standardizing software development (interview with Shibata
Kanji, Manager, Engineering Department, Hitachi Software Works, 9/19/85).
A major article written in 1981 by the manager primarily responsible for

developing the Toshiba facility also cited the SDC factory experiment as a

precedent; see Yoshihiro Matsumoto (Toshiba), "Management of Industrial

Software Production," Computer , February 1984, p. 318 fn 2. Along with
developing their own technology, NEC engineers extensively studied
American software techniques, including SDC's estimating model and then
the Software Factory during the 1970s as approaches to cost-estimation and
project control (interview with NEC Vice-President Mizuno Yukio, 9/26/85).
See also Iwamoto Kanji and Okada Masashi (NEC), "Purojekuto kanri no
tsuru" (Project control tools), Joho shori (Information processing), Vo.
20, No. 8, p. 721. Iwamoto was a member of the Computer Systems Research
Laboratory, part of the Central Research Laboratories; he joined the
Software Product Engineering Laboratory when NEC created this in 1980.

Okada was then in the systems engineering department of NEC Software Ltd.

,

a subsidiary.

32. See Marvin Zelkowitz et al., "Software Engineering Practices in the US
and Japan," Computer , June 1984. The authors, who studied about 30
organizations, concluded that, "we found the level of technology used by
the Japanese to be similar to US practices, but with some important
differences ... we found that Japanese companies typically optimize
resources across the company rather than within a single project... Thus,
tool development and use is more widespread in Japan" (p. 63).

67

www.manaraa.com

33. Examples of recent reports on Japanese activities in software include the
following, in addition to "Software in Japan," Electronic Engineering Times ,

11 February 1985 (quoted in the body of this article):

A Competitive Assessment of the U.S. Software Industry (U.S. Dept. of

Commerce, International Trade Administration, Washington, D.C. , 1984) , p. vi:

"... more widespread use of software engineering techniques by the
Japanese may enable them to have an edge in producing lower cost,

higher quality (i.e. error free) software, faster than their U.S.
counterparts.

Robert Haavind, "Tools for Compatibility, " High Technology , August 1986,

pp. 34-42:

"A major national program and many individual company projects aim to

improve software quality and productivity by developing techniques that

range from reusing parts of previous programs to fully automating
software production.
. . . Discipline and adherence to rigid software engineering practices are
common in Japan, making the climate for automated programming more
favorable than it might be in a more freewheeling setting. Software is

often developed in regimented, factorylike settings different from
anything in the United States.

. . . Although Japanese companies are making important progress in boosting
programmer productivity while turning out essentially bug-free software,
NEC... is puzzled that [there is] so little similar activity in the United
States. The U.S. may retain some mystique from the early days of

computers when software grew up as a black art, whereas Japan, which
only recently recognized that software is the key to expanding the future
uses of computers, is pushing this technology after great strides have
been made in software engineering.

"Japan's Push to Write 'World-Class' Software," Businessweek , 2

7 February 1984, pp. 96-98:

"...[l]t would be dangerous to write off the Japanese as competitors in

world-class software. . . 'People are misreading the capability of the
Japanese when they say Japanese can't build good software,' maintains
Joseph C. Berston, president of Comstute Inc. , a software consulting firm

based in Japan. Indeed, Japanese companies may actually have some
advantages over their U.S. rivals. Because of the legendary thoroughness
of Japanese workers, 'the finished product here is better, more reliable,

and easier to maintain,' says consultant Berston. Labor costs are also

lower for Japanese software makers... In addition to that salary
differential, the Japanese claim their programmers are 10% to 15% more
productive than their U.S. counterparts because of Japanese investments
in program-development aids. To widen that margin, they are now
building software factories that give their programmers access to even

68

www.manaraa.com

more sophisticated tools.

Bro Uttal, "Japan's Persistent Software Gap," Fortune , 15 October 1984, pp.
151-160:

"NEC and Hitachi in particular have developed arsenals of programs to

automate programming. They're also cutting costs and improving quality

with management techniques for catching software defects early, before
the bugs burrow deep into finished programs... The mainframers are
relying heavily on software 'factories' to cut costs and improve quality.

The idea is to apply mass-production techniques to writing programs that

are mostly custom-tailored. Hitachi built the first factory, a five-story
structure housing 3,000 programmers, in 1969. Fujitsu and NEC followed

suit with smaller centers for 1,000 to 2,000 workers. Together the Big
Three now boast ten factories. Such factories, rare in the U.S., treat

software as an industrial product, not as a form of art. . . Though the final

product may not be innovative, it's often highly reliable."

34. A recent paperback by a popular Japanese journalist was devoted solely

to the appearance of software factories in Japan. See Shimoda Hirotsugu,
Sofutouea kojo (Software factories) (Tokyo: Toyo Keizai Shimposha, 1986).

35 . A Competitive Assessment of the U.S. Software Industry (U.S.
Dept. of Commerce, International Trade Administration, Washington,
D.C., 1984), p. 61.

36. "Software in Japan," Electronic Engineering Times , 11 February
1985, p. 1.

37. Kiriu Hiroshi, Sofutouea sangyo no jitsuzo (The actual status of the
software industry), Tokyo, Nikkan Shobo, 1986, pp. 184-201.

38. There were as follows: Nippon Business Consultant (2,450 employees);
Computer Service (3,745); Nihon Information Service (1,210); Hitachi

Software Engineering (2,400); Toyo Information Systems (1,100); Intek

(1,549); Fujitsu Aibi (1,256); Nihon Denshi Keisan (1,117); NEC Software
(1,654); Ainesu (1,036); Hitachi Microcomputer Engineering (1,400); Nihon
System Development (1,300); Nihon Systemware (1,100); Enjaeke (1,300);
Nihon Computer Service Center (2,043); Data Process Consultant (1,000);
Maruei Keisan Center (1,100). Source: Kiriu, pp. 50-58.

39. Based on an analysis of Kiriu; Takahashi Kenkichi et al., Konkyuta
gyokai (The computer industry), Tokyo, Kyoikusha, 1985, pp. 161-210;
Shimoda Hirotsugu, Sofutouea kojo (Software factories) (Tokyo: Toyo
Keizai Shimposha, 1986); and Toyo Keizai Shimpo, Kaisha shikiho (Company
quarterly reports), 1986.

69

www.manaraa.com

40. According to Datamation (1 June 1985, pp. 58-120), in fiscal 1984,

among Japanese computer manufacturers, NEC ranked first in software
revenues ($299.9 million), followed by Fujitsu ($200) and Hitachi ($100).
See also A Competitive Assessment of the U.S. Software Industry , p. 40.

41. Kiriu, pp. 78-91.

42. Kiriu, p. 50.

43. See Michael A. Cusumano, "Diversity and Innovation in Japanese
Technology Management," in Richard S. Rosenbloom, ed.. Research on
Technological Innovation, Management, and Policy (Greenwich, Conn., JAI
Press, Vol. 3, 1986), pp. 137-167; Kenichi Imai et a!., "Managing the New
Product Development Process: How Japanese Companies Learn and Unlearn,"
and "Commentary," in Kim B. Clark et al. eds.. The Uneasy Alliance:

Managing the Productivity-Technology Dilemma (Boston: Harvard Business
School Press, 1985), pp. 330-381; Toshiro Hirota, "Technology Development
of American and Japanese Companies," Kansai University Review of Economics
and Business , March 1986, pp. 43-72.

44. Interviews with Mizuno Yukio, Vice-President, NEC, 9/26/85;
Mr. Azuma Motoei, Manager, Software Management Engineering Dept.,
Software Product Engineering Laboratory, NEC, 9/26/85 and 7/28-

29/86; and Yamaji Katsuro, Deputy General Manager, Software
Division, Computer Systems Group, Fujitsu, 7/31/86. See also the
discussion by Fujitsu Managing Director Mitsugi Mamoru, quoted in

Shimoda, p. 82.

45. Regarding NEC, in English, see, for example, Yukio Mizuno (NEC),
"Software Quality Improvement," Computer , March 1983, pp. 66-72, and "A
Quantitative Approach to Software Quality and Productivity Improvement,"
(NEC Corporation, undated); and Tadashi Yoshida (Fujitsu), "Attaining Higher
Quality in Software Development: Evaluation in Practice," Fujitsu Scientific

and Technical Journal , Vol. 21, No. 3, July 1985, pp. 305-316. My discussion
here is also based on several interviews with Mr. Yoshida. Each company
also has extensive regulations and education programs for software quality.

At Fujitsu, for example, these are described in "Sofutouea kaihatsu:
hinshitu, seisansei kojo ni tusite" (Software development: concerning quality

and productivity improvement), Fujitsu, Information Processing Group, No. 1

Software Division; and "Sofutouea no hinshitsu kanri" (Software quality

control), Fujitsu, Computer Systems Group, Software Division, 11 September
1985.

46. IBM, for example, has its Santa Teresa Laboratory. See G.H.
McCue, "IBM'S Santa Teresa Laboratory: Architectural Design for
Program Development," IBM Systems Journal , Vol. 17, No. 1, 1978.

Qther systems software facilities in IBM, such as at Endicott and
Poughkeepsie, New York, are also referred to as laboratories. DEC
tends to use no labels, and Data General simply "facility."

70

www.manaraa.com

47. An excellent summary of the state of the field is Goldberg's article in

IBM Systems Journal . More specific articles on IBM practices can be found
in issues from this journal in 1978, 1980, 1985, 1986. Another good summary
of articles is H. Hunke, ed. , Software Engineering Environments , (Amsterdam,
North-Holland, 1981. For a specific articles on TRW, see Barry W. Boehm et

al., "A Software Development Environment for Improving Productivity,"
Computer , June 1984, pp. 30-44; M.H. Penendo and A.B. Pyster, "Software
Engineering Standards for TRW's Software Productivity Project," Proc.
Second Software Engineering Standards Application Wokshop , May 17-19,

1983. Other papers and articles published in 1986-1987 in various IEEE and
ACM tutorials and other forums are also dealing extensively with
developments in software engineering environments at U.S. and Japanese
firms, and issues raised in this paper regarding the benefits or disadvantages
posed by a factory model

.

48. Actual company names and numbers cannot be given out, due to

confidentiality agreements. -- indicates either the information is not

tracked or was not provided.)

49. These and other benefits of the factory approach, such as division of

labor and standardization of procedures, should result in higher nominal
productivity rates, such as lines of code in a given time period, although
measuring this across different products written in different languages for

different machines is problematic and has not been attempted in the survey.

50. My thanks to John Pilat of Data General for this observation.

51. See Yoshihiro Matsumoto (Toshiba), "A Software Factory: An Overall
Approach to Software Production" (2 December 1986), forthcoming in Peter
Freeman, ed.. Software Reusability (IEEE Tutorial, 1987), p. 17 (unpublished
draft).

52. See, for example, a recent IEEE Tutorial on Software Reusability , edited
by Peter Freeman. IEEE Transactions on Software Engineering (SE-10, No.

5, 1984) was also a special issue on reusability and contains several useful
article on U.S. and Japanese cases.

53. See Matsumoto's 1987 paper on Toshiba, as well as Cusumano's paper on
Hitachi

.

54. Incorporating high levels of abstraction in procedures and data types
facilitates testing, debugging, and product enhancements, as well as

maximizes the generality or reusability of modules. See Barbara Liskov and
John Guttag, Abstraction and Specification in Program Development
(Cambridge, MA: MIT Press, 1986), especially pp. 6-10, 40-42, 56-57, 308.
Layering is somewhat of an alternative to strict top-down, structured design,
which for over a decade has been the preferred approach since it tends to

result in programs easier to modularize, verify, document, and maintain. I

especially thank Joel Moses and Wendy Mackay for their comments on this.

For discussions of top-down design and structured programming, see Dijkstra

(1965); Bohm and Jacopini (1966); Baker (1972); Stevens, Myers, and

71

www.manaraa.com

Constantine (1974); and Knuth (1977) collected in Edward Nash Yourdon, ed..
Classics in Software Engineering (New York, Yourdon Press, 1979). See also

Brooks, pp. 142-144.

55. Matsumoto (1984), pp. 61, 68.

56. Sever?.! pnpers from researchers and managers at NEC, mainly from the
Software Product Engineering Laboratory, provide examples of this: Kanji

iwamoto et a!., "Early Experiences Regarding SDMS Introduction into

Software Production Sites," NEC Research S Development , No. 68, January
1983, especially pp. 51-60; Kanji Iwamoto and Osamu Shigo, "Unifying Data
Flow and Control Flow Based Modularization Techniques," Proceedings of the
23rd IEEE Computer Society International Conference (Cotnpcon '81)

,

September 15-17, 1981, pp. 271-277; Tateyuki Tsurutani, Osamu Shigo, and
Touru Maejima, "SPOT: A Structured System Development System," NEC
Research »> Development , No. 40, January 1976, pp. 63-71; Osamu Shigo,
Kanji Iwamoto, and Shinya Fujibayashi, "A Software Design System Based on
a Unified Desi;gn Methodology," Journal of Information Processing , Vo, 3, No.

3, September 1980, pp. 186-196. For discussions of Hitachi, seeY. Futamura
et al. (Central Research Laboratory, Hitachi), "Development of Computer
Programs by Problem Analysis Diagram (PAD)," Proceedings, Fifth

International Conference on Software Engineering (IEEE, 1981), pp. 325-332;
M. Kobaya.5hi (Systems Development Laboratory, Hitachi) etal., "ICAS: An
Integrated Computer Aided Software Engineering System," IEEE Digest of

Papers— Spring '83 COMPCON (IEEE, 1983), pp. 239-240; Kataoka Masanori
(Hitachi Software Works) et a!., "Hyojun kozo ni motozuku keito-teki

sofutouea sekkei ho" (Software Specification and Design Method Based on
Integrated View of Structure Standardization), Joho shori (Information
processing). Vol. 25, No. 11, November 1984, pp. 1220-1227.

57. Werner- L. Frank, Critical Issues in Software (New York: John Wiley &

Sons, 198:i), pp. 34-36; Brooks, pp. 120-123; Shooman, pp. 483-489.

58. Brooks, p. 16.

59. Brooks, p. 31.

60. Again, JaiDanese companies did not all follow the same approach. NEC
usually was able to follow Brooks' advice but also tries to add its best
people to projects that are delayed. Fujitsu relies on overtime rather than
adding people Interviews with Sakata (NBC/Hitachi), 9/10/85, and Shibata
(Hitachi), 9/hJ/85; Azuma (NEC), 9/26/85; Yoshida Tadashi (Deputy Manager
of the QuiHity Assurance Department, Software Division/Computer Systems
Group, Fu.itsii), 9/24/85 and 7/31/86. According to Hitachi data, about 12%
of projects have been late between 1974 and 1985, with annual rates ranging
between 6.9% (1974) and 18.8% (1983) (data from Shibata, 7/23/86). As noted
earlier, Hitachi Software Engineering claimed that 98% of its projects came
in on time. According to Azuma, about 10% of projects late was common at

NEC, although this was a personal estimate. According to Yoshida, Fujitsu

reduced the number of projects its deems late (defined as received for final

inspection aft^jr the scheduled date) from about 40% ca. 1978-1979 to 14.6%
in 1981, 14.8% in 1982, and 12.1% in 1983 (7/31/86 interview).

72

www.manaraa.com

61. For productivity data at Toshiba, see Yoshihiro Matsumoto (Toshiba), "A
Software Factory: An Overall Approach to Software Production" (2

December 1986), forthcoming in Peter Freeman, ed.. Software Reusability

(IEEE Tutorial, 1987); Y. Matsumoto et al., "SWB System: A Software
Factory," in H. Hunke, ed.. Software Engineering Environments (Amsterdam:
North-Holland, 1981), pp. 305-318; "New Toshiba Software Facility Spurs
Productivity," Toshiba Newsletter , No. 256, November 1983, p. 1; K.H. Kim,

"A Look at Japan's Development of Software Engineering Technology,"
Computer , May 1983, pp. 31-33.

62. This was recently pointed out by a manager at IBM (which, as an
organization, paid little attention to reusabiity), who observed that

reusability "assures increasing quality over time" and "concentrates effort on

new aspects of product," as well as "delivers function with less effort and
error" and "abbreviates testing." See G.F. Hoffnagle and W.E. Beregi,

"Automating the software development process," IBM Systems Journal , Vol.

24, No. 2 (1985), p. 110.

63. For a history of the development of Japanese quality control practices,

see Cusumano (1985), Chapter 6. For a sampling of Japanese company
discussions on quality control practices applied to software see: Yukio
Mizuno (NEC), "Software Quality Improvement," Computer , March 1983, pp.
69-71, and "A Quantitative Approach to Software Quality and Productivity
Improvement," NEC Corporation (undated manuscript); Tadashi Yoshida
(Fujitsu), "Attaining Higher Quality in Software Development -- Evaluation in

Practice," Fujitsu Scientific and Technical Journal , Vol. 21, No. 3 (July 1985),

pp. 305-316; and Hashimoto Yaichiro et al. (Hitachi), "Sofutouea hinshitsu
hyoka shisutemu 'SQE'" (Software Quality Estimation System SQE), Hitachi

hyoron . Vol. 68, No. 5 (May 1985), pp. 55-58.

64. Several special issues of Hitachi's in-house technical journal discuss the
development of these software systems and their applications. See Hitachi

hyoron , December 1980 and May 1986 in particular. For NEC's system, see
Uenohara Michiyuki (NEC) et al., "Development of Software Production and
Maintenance System," Research and Development in Japan Awarded the
Okochi Memorial Prize (Okochi Memorial Foundation, 1984), pp. 26-27; and
Kanji Iwamoto (NEC), etal., "Early Experiences Regarding SDMS Introduction
into Software Production Sites," NEC Research and Development, January
1983, p. 51.

65. Conceptualizations of the software life cycle already already appear to

borrow from the model hardware development presents. For example, one of

the earliest proponents of "software engineering, " TRW's Barry Boehm, talks

about the software life cycle as containing seven phases: (1) System
Requirements, (2) Software Requirements, (3) Preliminary Design, (4) Detailed
Design, (5) Coding and Debugging, (6) Testing and Pre-Operations, and (7)

Operations and Maintenance. These steps correspond closely to the "phases
of product development for highly engineered office equipment " (produced by
IBM) described in a popular textbook on product management: (1) Proposal,

73

www.manaraa.com

(2) Specifications, (3) Prototype, (4) Production Model, (5) Manufacturing, (6)

Delivery. Assuming that "Operations and Maintenance" on the software side

includes delivery, and that "Manufacturing" on the hardware side includes
testing, adding "Service" to the hardware product life cycle would complete
an analogy to software. See B.W. Boehm, "Software Engineering," IEEE
Transactions on Computers , December 1976, Vol. C-25, No. 12, pp. 1126-1141;
and Edgar A. Pessemier, Product Management: Strategy and Organization ,

New York, John Wiley & Sons, 1982, p. 362.

66. See R. Goldberg, "Software Engineering: An Emerging Discipline," IBM
Systems Journal , Vol. 25, Nos. 3/4, 1986, pp. 334-353. A discussion of

this shift in focus to enviroments can also be found in Horst Hunke, ed..
Software Engineering Environments (Amsterdam: North-Holland, 1981).

67. For a discussion of strategic management concepts see Arnoldo C. Hax
and Nicolas S. Majluf, Strategic Management: An Integrative Perspective
(Englewood Cliffs, N.J., Prentice-Hall, 1984), especially pp. 72-107.

68. In terms of computing performance per cost, mainframes produced by
Hitachi, Fujitsu, and NEC for several years have all been ranked equivalent
or superior to IBM machines. See, for example. Dale F. Farmer, "IBM-
Compatible Giants," Datamation , December 1981, pp. 92-104; "2 New
Computers from I.B.M. Rival," The New York Times , 12 March, 1985, p. D5;
Nikkei Computer , 4 March 1985, pp. 49-50 (Japanese). For supercomputers,
where NEC may very well be taking the lead, see Raul Mendez and Steve
Orszag, "The Japanese Supercomputer Challenge," Datamation , 15 May 1984,

pp. 113-119.

453^^ 099 74

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

Date Due

FEB2I

www.manaraa.com

MIT LIBRARIES

3 TDflD DDS 133 T2fl

,f^

^

www.manaraa.com

